Quantum algorithm for linear systems of equations.

نویسندگان

  • Aram W Harrow
  • Avinatan Hassidim
  • Seth Lloyd
چکیده

Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b(-->), find a vector x(-->) such that Ax(-->) = b(-->). We consider the case where one does not need to know the solution x(-->) itself, but rather an approximation of the expectation value of some operator associated with x(-->), e.g., x(-->)(dagger) Mx(-->) for some matrix M. In this case, when A is sparse, N x N and has condition number kappa, the fastest known classical algorithms can find x(-->) and estimate x(-->)(dagger) Mx(-->) in time scaling roughly as N square root(kappa). Here, we exhibit a quantum algorithm for estimating x(-->)(dagger) Mx(-->) whose runtime is a polynomial of log(N) and kappa. Indeed, for small values of kappa [i.e., poly log(N)], we prove (using some common complexity-theoretic assumptions) that any classical algorithm for this problem generically requires exponentially more time than our quantum algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolution of Fuzzy Complex Systems of Linear Equations Via Wu's Method

The aim of this paper is to present algebraic method which is called Wu's method to solving fuzzy complex systems of linear equations. Wu's method is used as a solution procedure for solving the crisp polynomial equations system. This algorithm leads to solving characteristic sets that are amenable to easy solution. To illustrate the easy application of the proposed method, numerical examples a...

متن کامل

An accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations

‎In this paper‎, ‎an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed‎. ‎The convergence analysis of the algorithm is investigated‎. ‎We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions‎. ‎Finally‎, ‎some numerical examples are given to demons...

متن کامل

GGMRES: A GMRES--type algorithm for solving singular linear equations with index one

In this paper, an algorithm based on the Drazin generalized conjugate residual (DGMRES) algorithm is proposed for computing the group-inverse solution of singular linear equations with index one. Numerical experiments show that the resulting group-inverse solution is reasonably accurate and its computation time is significantly less than that of group-inverse solution obtained by the DGMRES alg...

متن کامل

Jacobi Operational Matrix Approach for Solving Systems of Linear and Nonlinear Integro-Differential Equations

‎‎‎‎‎‎‎‎‎‎‎‎‎This paper aims to construct a general formulation for the shifted Jacobi operational matrices of integration and product‎. ‎The main aim is to generalize the Jacobi integral and product operational matrices to the solving system of Fredholm and Volterra integro--differential equations‎ which appear in various fields of science such as physics and engineering. ‎The Operational matr...

متن کامل

Quantum Algorithms for Systems of Linear Equations

This article reviews the 2008 quantum algorithm for linear systems of equations due to Harrow, Hassidim and Lloyd, as well as some of the followup and related work. It was submitted to the Springer Encyclopedia of Algorithms. 1 Problem Definition The problem is to find a vector x ∈ C such that Ax = b, for some given inputs A ∈ CN×N and b ∈ C . Several variants are also possible, such as rectang...

متن کامل

Experimental realization of quantum algorithm for solving linear systems of equations

"Experimental realization of quantum algorithm for solving linear systems of equations" (2014). Many important problems in science and engineering can be reduced to the problem of solving linear equations. The quantum algorithm discovered recently indicates that one can solve an N-dimensional linear equation in O(log N) time, which provides an exponential speedup over the classical counterpart....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 103 15  شماره 

صفحات  -

تاریخ انتشار 2009